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Abstract—Overparameterized machine learning models are
often fit perfectly to training data, yet remarkably generalize
well to new data. However, learning good models can require
an enormous number of labeled training data. This challenge
motivates the study of active learning algorithms that sequentially
and adaptively request labels for “informative” examples for a
large pool of unlabeled data. A maximin criterion was recently
proposed for active learning specifically in the overparameter-
ized and interpolating regime. Roughly speaking, the maximin
criterion selects the example that is most difficult to interpolate,
as measured by an appropriate norm on the interpolating func-
tion. Data-dependent norms perform best empirically, exhibiting
intriguing adaptivity to cluster structure within the data. The
main contribution of this paper is to mathematically characterize
this behavior. Our main results show that the maximin criterion
based on data-dependent norms provably discovers clusters and
also automatically generates labeled coverings of the dataset.

Index Terms—Active Learning, Reproducing Hilbert Kernel
Spaces, Data-dependent Norm

I. INTRODUCTION

Deep neural networks have revolutionized machine learning
applications, and theoreticians have struggled to explain their
surpising properties. Deep neural networks are highly overpa-
rameterized and often fit perfectly to data, yet remarkably the
learned models generalize well to new data. A mathematical
understanding of this phenomenom is beginning to emerge [1],
[2], [4], [5], [7], [10], [13], [19], which suggests that among all
the networks that could be fit to the training data, the learning
algorithms used in fitting favor networks with smaller weights,
providing a sort of implicit regularization. With this in mind,
researchers have shown that even shallow (but wide) networks
and classical kernel methods fit to the data but regularized to
small weights (e.g., minimum norm fit to data) can generalize
well [3], [5], [10], [12].

Despite the recent success and new understanding of these
systems, it still is a fact that learning good neural network
models can require an enormous number of labeled data. The
cost of obtaining class labels, for example, can be prohibitive
in many applications. This has prompted researchers to inves-
tigate active learning for neural networks [8], [9], [11], [14],
[17], [20]. Active learning algorithms have access to a large
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but unlabeled dataset of examples and sequentially select the
most “informative” examples for labeling [15], [16] . This can
reduce the total number of labeled examples needed to learn
an accurate model.

This paper builds on a new framework for active learning in
the overparameterized and interpolationg regime [11], focusing
on kernel methods (which can be viewed as single hidden-layer
networks). That work proposed an active learning algorithm
based on the notion of minimum norm interpolators. The
algorithm selects examples to label based on a maximin
criterion. Roughly speaking, the maximin criterion selects the
example that is most difficult to interpolate. A minimum norm
interpolating model is constructed for each possible example
and the one yielding the largest norm indicates which example
to label next. The rationale for the maximin criterion is that
labeling the most challenging examples first may eliminate the
need to label many of the other examples.

In [11], it is shown that the maximin criterion using the
RKHS norm tends to select unlabeled examples near the
decision boundary and close to oppositely labeled exam-
ples, allowing the algorithm to focus on learning decision
boundaries. The maximin criterion reduces to optimal binary
search in the one-dimensional linear classifier setting, and
several other interesting properties were established for the
criterion. Experimentally, it was shown that using a data-
based norm in the “max” step (instead of the RKHS norm)
exhibits the desirable behavior of automatically discovering
cluster structure in unlabeled data and labeling representative
examples from each cluster. The main contribution of this
paper is to mathematically characterize the clustering behavior.
Our main results show that the maximin criterion provably
discovers clusters and also automatically generates labeled
coverings of the dataset.

II. SELECTION CRITERION

In [11], we introduced a selection process for active learning
algorithms. According to this process, at each time step, the
algorithm has access to a pool of labeled samples L =
{(x1, y1), · · · , (xL, yL)} and a set of unlabaled samples U
where xi ∈ X , yi ∈ {−1,+1} for all i ≤ L and U ⊆ X .
At each iteration, one unlabeled sample, u∗ ∈ U , is selected,
labeled and added to the pool of labeled samples. The selection
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process is designed to pick the samples which are most
informative upon being labeled. The proposed notion of score
is the measure of informativeness of each sample u ∈ U : at
each time, the score of each unlabaled sample is computed,
and the sample with the largest score is selected to be labeled.

u∗ = argmaxu∈U score(u) . (1)

Note that for any unlabeled sample u ∈ U , the value of
score(u) depends implicitly on the set of currently labeled
points, L: information gained by labeling u depends on
the current knowledge of the learner, i.e., L. To define our
proposed notion of score, we introduce some notations next.

Given the set of labeled samples, L, and a set of functions
F mapping X to R, let f(x) ∈ F be the interpolating function
such that f(xi) = yi for all (xi, yi) ∈ L. Clearly, the definition
of f(x) depends on the set of currently labeled samples L,
although we omit this dependency from the notation for the
sake of brevity. Also, note that there are many functions that
interpolate a discrete set of points such as L. We define f(x)
to be the minimum norm interpolator.

f(x) := argming∈F ‖g‖F (2)

s.t. g(xi) = yi, for all (xi, yi) ∈ L .

This definition requires definition of norm associated with the
function class F . The choice of F and the norm ‖ · ‖F is
application dependent. In this paper, we look into function
classes in reproducing kernel Hilbert spaces where the norm
is the corresponding Hilbert norm.

Roughly speaking, for a sample u ∈ U , we want score(u)
to measure the amount of change in the interpolating function
upon labeling u. For t ∈ {−1,+1} and u ∈ U , define f tu(x)
to be a new minimum norm interpolating function based on
current set of labeled samples L, their labels and sample u
with label t:

f tu(x) := argming∈F ‖g‖F (3)

s.t. g(xi) = yi, for all (xi, yi) ∈ L
g(u) = t .

So, score(u) should reflect ‖f tu(x)−f(x)‖ which is exactly the
average magnitude of the change in the interpolating function
upon labeling u with t.

Note that, we need to compute score(u) without knowing
the label of u. To do so, we come up with an estimate of
label of u, denoted by t(u) ∈ {−1,+1} and compute score(u)
assuming that upon labeling, u will be labeled t(u). Similar
to [11], we propose the following criterion for choosing t(u):

t(u) := argmint∈{−1,+1}‖f tu(x)‖F . (4)

We are estimating the label of any unlabeled sample, u, to
be the one which gives the smoothest interpolating function
among the two possible functions f+u (x) and f−u (x).

In this paper, we will focus on interpolating functions in
a Reproducing Kernel Hilbert space (RKHS). In [11], it is

proved that when f(x) is constrained to be an element of
RKHS and the norm used in (4) is the Hilbert norm, we have

t(u) =

{
+1 if f(u) ≥ 0

−1 if f(u) < 0
.

We use this property about the estimated label of sample u
denoted by t(u) in this paper.

Define
fu(x) := f t(u)u (x)

to be the interpolating function after adding the sample u with
the label t(u), defined above. We define the notion of score
as

score(u) := ‖fu(x)− f(x)‖ . (5)

The theoretical results in [11] focuses on interpolating func-
tions in RKHS and the score function based on the Hilbert
norm associated with RKHS. Several theoretical guarantees
provide the intuition that the score function based on the
Hilbert norm focuses on labeling the samples that are near the
decision boundary of the current interpolator, and are close to
the oppositely labeled samples. This intuition is confirmed in
the numerical simulations presented in that paper.

An alternative approach presented in [11] is using norms
that are different from Hilbert norm in the definition of the
score function (5). The data-based norm is defined as

‖fu(x)− f(x)‖U :=

√
1

|U|
∑
x∈U

[
fu(x)− f(x)

]2
. (6)

This notion of score function measures the average magnitude
of change in the interpolating function, evaluated at the
unlabeled samples. The intuition behind this definition is the
following: If the samples are generated independently and
identically based on the distribution PX(x), and if the pool
of unlabeled samples is dense, then the above sum is an
estimation of the following term√

EPX

[
fu(x)− f(x)

]2
. (7)

So score function would give larger weight to changes in the
interpolating functions in the areas of input space X which
have higher probability. Similar data-based norms have been
proposed in the standard, passive learning setting [6], [18].

One particular example of this sensitivity to the generative
distribution PX is when the data is clustered. This implies
that the distribution PX is nonzero only in union of several
compact closed subsets of X . Now, if labeling a certain point
changes the interpolating function drastically in the region in
which PX is zero, and does not make much difference in the
region in the support of PX , then labeling this point would not
improve the performance of the subsequent classification task
significantly: the only change in the decision boundary occurs
in the region in which there are no samples in this scenario.

Numerical simulations in [11] show that the active learning
algorithm based on a selection criterrio with the notion of
score with the data-based norm achieves more graceful decay
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of the probability of error compared to the notion of score
based on the Hilbert norm. However, there are no theoretical
guarantees on the performance of this criterion. In this paper,
we provide several theoretical statements on the performance
of the selection criterion based on the data-based norm and
support these results with various numerical simulations. For
our theoretical analysis, we assume that PX is uniform over
its support, denoted by X . Since the selection process of the
next sample to be labeled, defined in (1) only depends on the
relative value of score function for various unlabeled points,
applying a monotonic function on score does not change the
outcome of selection process. Hence, we use the following
definition of the score function in our theoretical analysis
instead of (7).

score(u) :=

∫
x∈X

[
fu(x)− f(x)

]2
dPX(x) . (8)

This is roughly equivalent to the selection criterion based on
the empirical data-based norm in (6) in the large-sample limit.

III. REPRODUCING KERNEL HILBERT SPACE

We will focus on kernel based interpolating functions. The
kernel functions we use have the following form: For x, y ∈
Rd and p > 1

kh,p(x, y) = exp
(
− 1

h
‖x− y‖p

)
, (9)

where ‖x‖p :=
(∑d

i=1 x
p
i

)1/p
is the `p norm and ‖x− y‖p is

the Minkowski distance satisfying the triangle inequality. For
p = 1, 2 this category of kernels are construct Reproducing
Kernel Hilbert Spaces. When the parameters h and p are
specified, we denote the kernel function kh,p(x, y) by k(x, y).

For the set of labeled samples L = {(x1, y1), · · · , (xL, yL)}
with labels in {−1,+1}, let the function f(x) be decomposed
as

f(x) =

L∑
i=1

αik(xi, x) (10)

with α = K−1y,

where K =
[
Ki,j

]
i,j

is the L by L matrix such that Ki,j =

k(xi, xj) and y = [y1, · · · , yL]T . Using reproducible kernels
imply f(x) ∈ H for the a RKHS H. Then, f(x) defined above
is the minimum Hilbert norm interpolating function defined
in (2).

For u ∈ U and t ∈ {−1,+1}, the minimum norm inter-
polating unction f tu(x) (based on currently labeled samples L
and sample u with label t) is defined similarly :

f tu(x) =
L∑

i=1

α̃ik(xi, x) + α̃L+1k(u, x) (11)

with α̃ = K̃
−1
u ỹu,

where

K̃u =

[
K au
aTu 1

]
, au =

k(x1, u)
...

k(xL, u)

 and ỹt =

[
y
t

]
. (12)

IV. PROPERTIES OF DATA BASED-NORM CRITERION

In this section, we present two theoretical results on the
properties of data-based norm selection criterion. We will
prove the properties of the selected examples based on the
data-based norm in the context of the clustered data. In
particular, if the support of the generative distribution PX(x)
is composed of several disjoint clusters, the data-based norm
criterion prioritizes labeling samples from bigger clusters first.
Subsequently, it selects a sample from each cluster to be
labeled. If the clustering in the dataset is aligned with their
labels (most of the samples in the same cluster are in the
same class), labeling one sample in each cluster ensures rapid
decay in the probability of error of the classifier as a function
of number of labeled samples. This behavior is consistent with
numerical simulations presented in Section V.

The next theorem will show that if the distance between
the clusters are sufficiently large, then the first example to be
selected to be labeled is in the biggest cluster.

Theorem 1 (First point in clustered data). Fix p > 1 and
h > 0. Let the distribution P (X) be uniform over M disjoint
sets B1, · · · , BM such that Bi is an `p ball with radius ri and
center ci, i.e.,

Bi = Bd,p(ri; ci) := {x ∈ Rd : ‖x− ci‖p ≤ ri} . (13)

Without loss of generality, assume r1 > r2 > · · · > rK . Define
D = mini6=j ‖ci − cj‖p − 2r1 to be the minimum distance
between the clusters.

Assume L = ∅ and we usethe interpolating functions
f defined in (10) with kh,p (defined in (9)). The selection
criterion is based on the score function defined in (8). If

D >
h

2

[
lnM − ln

(
1− (r2/r1)d

)]
,

and r1 ≤ h/2, then the first point to be labeled is in the
biggest ball, B1.

The next theorem will show that if the distance between the
clusters are sufficiently large and the radius of the clusters are
sufficiently small, then the active learning algorithm based on
the notion of score with data-based norm labels one sample
from each cluster before zooming in inside the clusters.

Theorem 2 (Cluster exploration). Let S be the support of
PX . Assume S = ∪Mi=1Bi where Bi’s are `p-balls with
radii r and centers ci. Define D := mini6=j ‖ci − cj‖p −
2r1 to be the minimum distance between the clusters. Let
L = {x1, x2, · · · , xL} be L < M labeled points such that
x1 ∈ B1, x2 ∈ B2, · · · , xL ∈ BL.

If r < h/3 and D ≥ 12h ln(2M), then the next point to
be labeled is in a new ball (∪Mi=L+1Bi) containing no labeled
points.

As a corollary of the above theorem, one can see that if
the ration of the distance between the clusters to the radius of
clusters is sufficiently large (D/r > 36ln(2M)), then one can
use a kernel with proper bandwidth which picks one sample
from each cluster initially.
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V. NUMERICAL SIMULATIONS

In this Section, we present the outcome of numerical
simulations of the proposed selection criteria on synthetic and
real data. In this section, score(1) is used to denoted the score
function defined in (5) with the Hilbert norm associated with
the Laplace Kernel. Similarly, score(2) is the score function
defined in (6) with the data-based norm.

A. Clustering

To capture the properties of the proposed selection criteria
in clustered data, we implemented the algorithm on synthetic
clustered data in Figure 1. In this setup, the samples are
generated based on a uniform distribution on 13 clusters.
Points in blue and yellow clusters are labeled +1 and −1,
respectively. We run the two variations of proposed active
learning algorithms and compare their sampling strategy in
this setup. The left figure uses score(1) to be the score
function defined in (5) with the Hilbert norm associated with
the Laplace Kernel. Similarly, score(2) is the score function
defined in (6) with the data-based norm.

The selection criterion based on score(1) prioritizes sam-
pling on the decision boundary of the current classifier where
the currently oppositely labeled samples are close to each
other. This behavior of the algorithm based on score(1) is
proved in [11]. Alternatively, score(2) prioritizes labeling at
least one sample from each cluster. Hence, after labeling 13
samples, the active learning algorithm based on score(2) has
one sample in each cluster, but the active learning algorithm
based on score(2) has not labeled any samples in 5 clusters.

Fig. 1: Points in blue and yellow clusters are labeled +1 and
−1, respectively. The left figure uses score(1) to be the score
function defined in (5) with the Hilbert norm associated with
the Laplace Kernel. Similarly, score(2) is the score function
defined in (6) with the data-based norm. The first 13 samples
selected by score(1) and score(2) are depicted as black dots.
score(2) has labeled one sample from each cluster, but score(1)

has not labeled any samples from 5 clusters. Note that score(1)

has spent some of the sample budget to discriminate between
nearby clusters with opposite labels.

B. MNIST experiments

We ran algorithms based on our proposed selection criteria
for a binary classification task on MNIST dataset. The binary
classification task used in this experiment assigns a label −1 to
any digit in set {0, 1, 2, 3, 4} and label +1 to {5, 6, 7, 8, 9}. We

used Laplace kernel as defined in (9) with p = 2 and h = 10.
In Figures 2, score(1) is the score function defined in (5) with
the Hilbert norm associated with the Laplace Kernel. Similarly,
score(2) is the score function defined in (6) with the data-based
norm.

To asses the quality of performance of each of the selection
criteria, we compare the probability of error of the interpolator
at each iteration. In particular, we plot the probability of error
of the interpolator as a function of number of labeled samples,
using the score(1) and score(2) functions on the traning set and
test set separately. For comparison, we also plot the probability
of error when the selection criterion for picking samples to be
labeled is random.

Figure 2 (a) shows the decay of probability of error in the
training set. When the number of labeled samples is equal
to the number of samples in the training set, it means that all
the samples in training set are labeled and used in constructing
the interpolator. Hence, the probability of error on the training
set for any selection criterion is zero when number of labeled
samples is equal to the number of samples in the training set.
Figure 2 (b) shows the probability of error on the test set as a
function of the number of labeled samples in the training set
selected by each selection criterion.
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Fig. 2: Probability of error for learning a classification task on
MNIST data set. The performance of three selection criteria
for labeling the samples: random selection, active selection
based on score(1), and active selection based on score(2). The
first curve depicts the probability of error on the training set
and the second curve is the probability of error on the test set.
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1) Clustering in MNIST: The binary classification task used
in the MNIST experiment assigns a label −1 to any digit in
set {0, 1, 2, 3, 4} and label +1 to {5, 6, 7, 8, 9}. We expect that
the images are clustered where each cluster would correspond
to the images of a digit. We expect that the advantageous
behavior of using data-based norm criterion in clustered data
is one of the reasons for faster decay of probability of error
of the score(2) in Figure 2.

To verify this intuition, we look at the samples that were
chosen by each criterion and the digit corresponding to that
sample. Note that this digit is the number represented in the
image and not the label of the sample since the label of
each sample is +1 or −1 depending whether the number is
greater than 4 or not. After labeling 100 samples, we look
at histogram of the digits associated with the labeled samples
with each criterion score(1) and score(2). If samples of each
cluster are chosen to be labeled uniformly among clusters, we
would see about 10 labeled samples in each cluster. Figure 3
shows the histogram described above for two variations of the
selection criteria based on score(1) or score(2). We observe
that selecting samples based on score(2) is much more uniform
among the clusters. On the contrary, selecting samples based
on score(1) gives much less uniform samples among clusters.
In the particular example given in Figure 3, we see that even
after selecting 100 samples to be labeled, no sample in the
cluster of images of number 0 has been labeled in this instance
of execution of the selection algorithm based on notion of
score(1).

To quantify the uniformity of selecting samples in different
clusters, we ran this experiment 20 times and estimated the
standard deviation of number of labeled samples in each
cluster after labeling 100 samples. Note that since we have
10 clusters, the mean of the number of labeled samples in
each cluster is 10. The standard deviation using score(1) is
4.1 whereas standard deviation using score(1) is 2.7. This
shows that selection criterion based on score(2) samples more
uniformly among the clusters.

VI. PROOFS

To prove the statement of theorems presented in Section IV,
we introduce some notations consistent with the notation
introduced in Section III. Given a set of labeled samples
L = {(x1, y1), · · · , (xL, yL)}, define the L by L matrix
K = [k(xi, xj)]1≤i,j≤L and vector y = [y1, · · · , yL]T .

Recall that U is a set of unlabled examples. For u ∈ U and
t ∈ {−1,+1}, let au = [k(x1, u), · · · , k(xL, u)]T and K̃u be
the L+ 1 by L+ 1 matrix such that

K̃u =

[
K au
aTu 1

]
and ỹt =

[
y
t

]
.

Let Bd,p(r; c) be the d dimensional `p ball with radius r
centered at c (defined in (13)). Let Vd,p(r) be the volume
of Bd,p(r; 0) with respect to the Lebesgue measure.

A. Proof of Theorem 1
The statement of theorem implies that when the data is

clustered and distributed uniformly in `p balls, with centers
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Fig. 3: The histogram of the handwritten digits associated
with the labeled samples after labeling 100 samples. The first
histogram is for the selection criterion score(1) and the second
histogram is for the selection criterion score(2). Notably,
score(1) has not labeled any of the images of the digit 0.

far enough from each other, the first selected point using the
score function defined in (8) is in the largest ball. To prove this,
we will show that the score(c1), as defined in (8) is larger than
score(v) for any v /∈ B1 where c1 is the center of B1. Note that
this does not imply that the first selected point coincides with
the center of B1. It guarantees that the largest ball contains at
least one point with a score larger than that of every point in
other balls.

Since L = ∅, the empty set, the current interpolating
function is uniformly zero everywhere f(x) = 0 (according to
the definition (10)). According to the Equations (3) and (4),
for all u ∈ U , we can choose t(u) to be equal to +1 or −1.
We choose t(u) = +1 without loss of generality for all u ∈ U .

Using (10), adding any point u ∈ U with label t(u) to L
would give the new interpolating function

fu(x) := f t(u)u (x) = k(u, x) = exp
(
− 1

h
‖x− u‖p

)
.

Hence, since PX(x) is uniform over X = ∪Mi=1Bi

score(u) =

∫
x∈X

exp
(
− 2

h
‖x− u‖p

)
dPX(x)

=
1

V

M∑
i=1

∫
x∈Bi

exp
(
− 2

h
‖x− u‖p

)
dx
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where we defined V =
∑M

i=1 Vd,p(ri) to be the total volume
of X . So, to compute score(c1),

V score(c1) =
M∑
i=1

∫
x∈Bi

exp
(
− 2

h
‖x− c1‖p

)
dx

≥
∫
x∈B1

exp
(
− 2

h
‖x− c1‖p

)
dx

=

∫ r1

s=0

exp
(
− 2s

h

)
dVd,p(s) (14)

The integral is over a ball of radius r1 and the integrand only
depends on ‖x− c1‖p the distance from the center of the ball.
Hence, we used the change of variable s = ‖x − c1‖p in the
last line and used the notation defined above: Vd,p(r) is the
volume of Bd,p(r; 0), a d dimensional `p ball with radius r.

For v /∈ B1, we want to show that score(v) ≤ score(c1).
Let v ∈ Bj such that j 6= 1.

V score(v) =

∫
x∈Bj

exp
(
− 2

h
‖x− v‖p

)
dx

+
M∑

i=1,i6=j

∫
x∈Bi

exp
(
− 2

h
‖x− v‖p

)
dx (15)

We will bound each of above terms separately.
For any i 6= j and x ∈ Bi application of triangle inequality

gives

‖x− v‖p ≥ ‖ci − cj‖ − ‖x− ci‖ − ‖v − cj‖ ≥ D

since v ∈ Bj , x ∈ Bi and ‖ci− cj‖p ≥ D+ 2r1, ‖x− ci‖p ≤
ri ≤ r1 and ‖v − cj‖p ≤ rj ≤ r1. Hence,

M∑
i=1,i6=j

∫
x∈Bi

exp
(
− 2

h
‖x− v‖p

)
dx

≤
M∑

i=1,i6=j

∫
x∈Bi

exp
(
− 2

h
D
)
dx

≤ exp
(
− 2

h
D
) M∑
i=1,i6=j

Vi . (16)

One can show that shows that the first term in (15) is largest
when v coincides with cj . We omit the proof of this statement
for the sake of brevity, but it is presented in the longer version
of the paper. Hence,∫

x∈Bj

exp
(
− 2

h
‖x− v‖p

)
dx ≤

∫
x∈Bj

exp
(
− 2

h
‖x− cj‖p

)
dx

=

∫ rj

s=0

exp
(
− 2s

h

)
dVd,p(s) . (17)

Equations (14), (15), (16), and (17) give

V score(c1)− V score(v) ≥
∫ r1

s=rj

exp
(
− 2s

h

)
dVd,p(s)

− exp
(
− 2

h
D
) M∑
i=1,i6=j

Vi

≥ exp
(
− 2r1

h

) [
V1 − Vj

]
−M V1 exp

(
− 2D

h

)
.

Hence,
V

V1

[
score(c1)− score(v)

]
≥ exp

(
− 2r1

h

) [
1− Vj

V1

]
−M exp

(
− 2

D

h

)
(a)

≥ exp
(
− 2r1

h

) [
1−

(r2
r1

)d]−M exp
(
− 2

D

h

)
≥ 0 ,

where inequality (a) is due to the property that

Vd,p(r) =

[
2r Γ(1 + 1/p)

]d
Γ(1 + d/p)

and rj ≤ r2 for all j 6= 1. Also, the assumption

D >
h

2

[
lnM − ln

(
1− (r2/r1)d

)]
,

and r1 ≤ h/2 made in the statement of the theorem, yields
the last inequality.

B. Proof of Theorem 2

The statement of theorem shows that if the data is clustered,
and few of the clusters has been labeled so far, the algorithm
selects a sample from a cluster which has not been labeled so
far. To do so, without loss of generality, we show that for any
u ∈ BL, and there exists a v ∈ BL+1 such that

score(v) > score(u) .

The same argument shows that for any i ≤ L and any u ∈ Bi,
there exists a v ∈ BL+1 such that score(v) > score(u). This
proves that the score of any point in the labeled balls so far
is smaller than at least one point in the unlabeled clusters
and hence the next point to be selected is in one of currently
unlabeled balls.

We will show that for any u ∈ BL, and there exists a v ∈
BL+1 such that score(v) > score(u). In particular, for any
fixed u ∈ B1, we choose

v = cL+1 + (u− c1) . (18)

We break the rest of the proof into five steps.
Step 1: First, we will look into the interpolator function f(x)
such that f(xi) = yi for (xi, yi) ∈ L, defined in (10).

Since xi ∈ Bi for i = 1, · · · , L, and ‖ci − cj‖p > D + 2r,
we have ‖xi − xj‖p ≥ D and k(xi, xj) ≤ e−D/h. Hence,
matrix K can be decomposed as

K = IL + e−D/hE
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where IL is the identity L × L matrix and matrix E =
[Ei,j ]1≤i,j≤L satisfies 0 ≤ Ei,j ≤ 1. Hence, using Taylor
series,

K−1 = IL +
∞∑

n=1

(−1)ne−nD/hEn

(a)
= IL + Ẽ(1)

∞∑
n=1

e−nD/hLn−1

(b)
= IL +

e−D/h

1− Le−D/h
Ẽ(1) (c)

= IL + 2 e−D/hẼ(2) (19)

The matrices Ẽ(1) = [Ẽi,j ]1≤i,j≤L and Ẽ(2) also satisfy
|Ẽ(1)|i,j ≤ 1 and |Ẽ(2)|i,j ≤ 1. For any n ≥ 1, the matrix En

has elements smaller than Ln−1 (This can be proved using
induction over n). This gives (a). (b) is the summation of a
geometric series (which holds since D > h logL). (c) is due
to the assumption D > h ln(2L). Plugging this into (10) gives

f(x) =
L∑

i=1

(yi + ε(f)γi)k(xi, x)

where ε(f) = 2Le−D/h. To make the notation easier, from
now on, we will use the variables γi with possibly different
values in each line. Note that the values of γi depend on the
elements of matrix Ẽ(2) and realization of yi for i = 1, · · · , L.
But we always have |γi| ≤ 1.
Step 2: For any v ∈ BL+1, we have ‖v − xi‖p ≥ D for all
i = 1, · · · , L. Hence, the matrix K̃v defined in (12) takes the
form

K̃v = IL+1 + e−D/hE

where matrix E = [Ei,j ]1≤i,j≤L+1 satisfies |Ei,j | ≤ 1. Similar
analysis as in step 1 and (19) shows that for v ∈ BL+1 and
any t ∈ {−1,+1}, (using definition of f t(v)v (x) in (3)) we
have

f tv(x) =
L∑

i=1

[yi + ε(v)γi] k(xi, x) + [t+ ε(v)γL+1] k(v, x)

where ε(v) = 2(L+ 1) e−D/h. Hence,

f tv(x)−f(x) = t k(x, v)

+
(
ε(v) + ε(f)

)[ L∑
i=1

γik(x, xi) + γL+1k(x, v)
]

Note that the value of the variables γi above might be different
from the previous lines, but there exists parameters γi that
satisfy the above equality and |γi| ≤ 1.
Step 3: For any u ∈ BL, we will show that, yLf(u) ≥ 0.
According to Proposition 1 in [11], discussed above in Sec-
tion II, this proves that t(u) = yL: our estimation of label of

any sample in ball BL is yL, the label of the only currently
labeled sample in BL.

yLf(u) = y1

L∑
i=1

(yi + ε(f)γi)k(xi, u)

= (1 + ε(f)yLγL)k(xL, u) + yL

L−1∑
i=1

(yi + ε(f)γi)k(xi, u)

(a)

≥ (1− ε(f))e−2r/h − L(1 + ε(f))e−D/h
(b)

≥ 0 ,

where (a) is due to the following facts: since xL ∈ BL and
u ∈ BL, we have ‖xL − u‖ ≤ 2r and k(xL, u) ≥ e−2r/h.
Also, since u ∈ BL, for i ≤ L−1 we have ‖xi−u‖ ≥ D and
k(xi, u) ≤ e−D/h. The assumptions D > 12h log(2M), L <
M and the definition of ε(f) = 2Le−D/h give ε(f) ≤ 1/100.
Then using the assumption r < h/3 gives (b).
Step 4: Fix u ∈ BL and define d := ‖u − xL‖ ≤ 2r.
Step 3 above proves t(u) = yL. We will partition the
matrix K̃u defined in (12) into the blocks corresponding to
{x1, . . . , xL−1} and {xL, xu},

K̃u =

[
A B

BT D

]
where A is a symmetric L − 1 by L − 1 matrix and D is a
symmetric 2 by 2 matrix. The proof essentially follows from
the fact that the elements of B are k(xi, xL) and k(xi, xU ) for
i = 1, . . . , L− 1, and hence smaller than e−D/h. By carefully
bounding the off-diagonal elements of the matrix K̃

−1
u using

Schur complements, using properties of matrix D and careful
application of triangle inequality we show that1 there exist
parameters γi such that |γi| ≤ 1 and the interpolating function
f
t(u)
u (x) defined in (3) takes the form

f t(u)u (x) =
[ yL

1 + e−d/h
+ Lε(u)γL+1

]
k(x, u)

+
[ yL

1 + e−d/h
+ Lε(u)γ1

]
k(x, xL)

+
L−1∑
i=1

(yi + ε(u)γi)K(x, xi)

where ε(u) = 4L3e−D/h. Hence,

f t(u)u (x)−f(x) =
yL

1 + e−d/h
k(x, u)− yLe

−d/h

1 + e−d/h
k(x, xL)

+
[
Lε(u) + ε(f)

][ L∑
i=1

γik(x, xi) + γL+1k(x, u)
]

Step 5: Hence, using the fact that k(x, x′) ≤ 1, we get

|f tv(x)− f(x)|2 − |f t(u)u (x)− f(x)|2

≥ k2(x, v)− 2(L+ 1)2
[
Lε(u) + ε(v) + 2ε(f)

]
− 1

(1 + e−d/h)2

[
k(x, u)− e−d/hk(x, xL)

]2
1We omit the proof of this statement for the sake of brevity, but it is

presented in the longer version of the paper.
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Since PX(x) is uniform over ∪Mj=1Bj , we want to show
that

M∑
j=1

∫
x∈Bj

|f tv(x)− f(x)|2 − |f t(u)u (x)− f(x)|2 dx ≥ 0 .

(20)

To do so, we will bound the above term by∫
x∈BL+1

k2(x, v) dx− 2(L+ 1)2
[
Lε(u) + ε(v) + 2ε(f)

] M∑
i=1

Vi

−
M∑
j=1

∫
x∈Bj

[
k(x, u)− e−d/hk(x, xL)

]2
(1 + e−d/h)2

dx

≥
∫
x∈BL+1

k2(x, v) dx−
∫
x∈B1

[
k(x, u)− e−d/hk(x, xL)

]2
(1 + e−d/h)2

dx

−
{

2(L+ 1)2
[
Lε(u) + ε(v) + 2ε(f)

]
+ e−2D/h

} M∑
i=1

Vi

(21)

where the last inequality holds since for j 6= 1 and x ∈ Bj ,
we have k(x, u), k(x, xL) ≤ e−D/h.

Note that in (18) we defined v = cL+1 + (u − cL). This
gives ∫

BL+1

k2(x, v)dx =

∫
BL

k2(x, u)dx .

Hence,∫
x∈BL+1

(1 + e−d/h)2k2(x, v) dx−
∫
x∈BL

[
k(x, u)− e−d/hk(x, xL)

]2
dx

=

∫
BL

[
(1 + e−d/h)2k2(x, u)− k2(x, u)− e−2d/hk2(x, xL)

+ 2e−d/hk(x, u)k(x, xL)
]
dx

= e−d/h
∫
BL

[
(2 + e−d/h)k2(x, u)− e−d/hk2(x, xL)

+ 2k(x, u)k(x, xL)
]
dx

(a)

≥ e−2d/h
∫
BL

k2(x, xL)
[
1 + e−d/h(2 + e−d/h)

]
dx

(b)

≥ e−4r/h
∫
BL

k2(x, u)dx
(c)

≥ e−6r/hVL
(d)

≥ 1

10
VL .

We defined d = ‖u − x‖p. This implies k(x, u) ≥
k(x, xL)e−d/h which gives (a). (b) uses d ≤ 2r. For x ∈ BL,
we have ‖u − x‖p ≤ 2r. This gives inequality (c). The
assumption h

3 implies r < h
6 ln 10 which gives (d).

The assumption D ≥ 12h ln(2M) implies D ≥
6h ln(2LM) (since L < M ) which gives

2(L+ 1)2
[
Lε(u) + ε(v) + 2ε(f)

]
+ e−2D/h <

1

15M
.

Plugging the above two statements in (21) gives the desired
result.

So for any u ∈ ∪Li=1Bi, there exists a v ∈ ∪Mi=L+1Bi

which has larger score. Hence, the selection criterion based
on score(2) would always pick a sample from a new ball to
be labeled.

REFERENCES

[1] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang.
Fine-grained analysis of optimization and generalization for overparam-
eterized two-layer neural networks. arXiv preprint arXiv:1901.08584,
2019.

[2] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Recon-
ciling modern machine learning and the bias-variance trade-off. arXiv
preprint arXiv:1812.11118, 2018.

[3] Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent
for weak features. arXiv preprint arXiv:1903.07571, 2019.

[4] Mikhail Belkin, Daniel J Hsu, and Partha Mitra. Overfitting or perfect
fitting? risk bounds for classification and regression rules that interpolate.
In Advances in Neural Information Processing Systems, pages 2300–
2311, 2018.

[5] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand
deep learning we need to understand kernel learning. In International
Conference on Machine Learning, pages 540–548, 2018.

[6] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regular-
ization: A geometric framework for learning from labeled and unlabeled
examples. Journal of machine learning research, 7(Nov):2399–2434,
2006.

[7] Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does
data interpolation contradict statistical optimality? arXiv preprint
arXiv:1806.09471, 2018.

[8] David Cohn, Les Atlas, and Richard Ladner. Improving generalization
with active learning. Machine learning, 15(2):201–221, 1994.

[9] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active
learning with image data. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1183–1192. JMLR.
org, 2017.

[10] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshi-
rani. Surprises in high-dimensional ridgeless least squares interpolation.
arXiv preprint arXiv:1903.08560, 2019.

[11] Mina Karzand and Robert D Nowak. Active learning in the overpa-
rameterized and interpolating regime. arXiv preprint arXiv:1905.12782,
2019.

[12] Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel”
ridgeless” regression can generalize. arXiv preprint arXiv:1808.00387,
2018.

[13] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of in-
terpolation: Understanding the effectiveness of sgd in modern over-
parametrized learning. In International Conference on Machine Learn-
ing, pages 3331–3340, 2018.

[14] Ozan Sener and Silvio Savarese. Active learning for convolutional neural
networks: A core-set approach. arXiv preprint arXiv:1708.00489, 2017.

[15] Burr Settles. Active learning literature survey. Technical report,
University of Wisconsin-Madison Department of Computer Sciences,
2009.

[16] Burr Settles. Active learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, 6(1):1–114, 2012.

[17] Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov Kronrod, and
Animashree Anandkumar. Deep active learning for named entity
recognition. arXiv preprint arXiv:1707.05928, 2017.

[18] Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin. Beyond the point
cloud: from transductive to semi-supervised learning. In Proceedings of
the 22nd international conference on Machine learning, pages 824–831.
ACM, 2005.

[19] Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster
convergence of sgd for over-parameterized models and an accelerated
perceptron. arXiv preprint arXiv:1810.07288, 2018.

[20] Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and Liang Lin. Cost-
effective active learning for deep image classification. IEEE Transac-
tions on Circuits and Systems for Video Technology, 27(12):2591–2600,
2017.

878


